大学物理 ›› 2022, Vol. 41 ›› Issue (3): 16-.doi: 10.16854/j.cnki.1000-0712.210453

• 教学讨论 • 上一篇    下一篇

非等时变分与拉格朗日方程

李琛,徐丽佳,张小明,毛长荣,谢芳   

  1. 1. 宜春学院 物理科学与工程技术学院,江西 宜春336000;2. 宜春市第三中学, 江西 宜春336000
  • 收稿日期:2021-09-12 修回日期:2021-10-29 出版日期:2022-03-30 发布日期:2022-03-30
  • 通讯作者: 谢芳,E-mail: xiefang2005@163.com
  • 作者简介:李琛(1978—),男,湖南娄底人,宜春学院讲师,博士,主要从事大学物理教学和统计物理研究工作.
  • 基金资助:
    国家自然科学基金(12164049);江西省教改项目(JXJG-20-15-10  );江西省教育厅科学技术研究项目(GJJ201609) 资助.

Asynchronous variation and Lagrange,s equation

LEE Chern1, XU Li-jia1, ZHANG Xiao-ming1, MAO Chang-ning2, XIE Fang1   

  1. 1. College of Physical Science and Engineering Technology, Yichun College, Yichun, Jiangxi 336000, China; 
    2. Yichun No.3 High School, Yichun, Jiangxi 336000, China
  • Received:2021-09-12 Revised:2021-10-29 Online:2022-03-30 Published:2022-03-30

摘要: 在理论力学的教学中,基于最小作用量原理推导拉格朗日方程的时候,一般假设了等时变分的条件.本文在非等时变分的条件下重新推导了拉格朗日方程,并解释了非等时变分的物理含义.

关键词: 非等时变分, 拉格朗日方程, 最小作用量原理

Abstract: In the teaching of theoretical mechanics, Lagrange,s equation is deduced based on the principle of least action, and the condition of isochronous variation is generally assumed. Here the  Lagrange,s equation is rederived under the condition of asynchronous variation and its physical meaning is explained.

Key words: asynchronous variation,  Lagrange,s equation, principle of least action